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MULTITASKED EMBEDDED MULTIGRID FOR
THRFEDIMENSIONAL FLOW SIMULATION

Gary M. Johnson, Julie M. Swsuahclmr,
Daniel V. Pryor and Johnny P. Ziebarth AFOSR m-Tf.
InsWitute for Computational Studies 1287
PC Box 185e
Fort Collins, Colorado 80522 .
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SUMMARY

- An efficient algorithm designed to be used for Navier-Stokes simulations of complex flows

over complete configurations is described. The algorithm incorporates a number of elements,

including an explicit three-dimensional flow solver, embedded mesh refinements, a model

equation hierarchy ranging from the Euler equations through the full Navier-Stokes equa-

tions, multiple-grid convergence acceleration and extensive vectorization and multitasking for

efficient execution on paralleleprocessing supercomputers. Results are presented for a prelim-

inary trial of the method on a problem representative of turbomachinery applications. Based

on this performance data, it is estimated that a mature implementation of the algorithm will

yield overall speedups ranging as high as 100.

INTRODUCTION

It is generally recognized that a comprehensive approach to the simulation of flows involv-

ing both complex geometries and complex physics will require powerful advanced-architecture

supercomputers with very large memories. Machines capable of producing solutions to

Reynolds-averaged Navier-Stokes flows over complex geometries within computing times

short enough to be of design interest are expected to be available by the end of this decade.

In order to use these parallel-processing supercomputers effectively, algorithms must be

adapted to focus the power of multiple processing units on a single flow simulation. The pur-

pose of this work is to contribute to the development of such algorithms. The approach

selected enhances the efficiency of a robust and flexible solution procedure by implementing it

on a collection of local meshes embedded in a global mesh. Either the Euler, thin-layer

Navier-Stokes or full Navier-Stokes equations are solved on each mesh. The choice of model

equations is determined by the nature of the flow physics to be resolved on a particular mesh.

When the requirement for time accuracy is relaxed, a convergence acceleration procedure in

applied simultaneously to a.l meshes and all model equations. The entire algorithm is explicit

and is designed to perform well on computers consisting of multiple processing units, each

having vector processing capability. Examples of such machines are the Cray X-MP and Cray 2.
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EQUATIONS OF MOTION

The nondimensional equations of motion may be written in conservation-law form as

q8- -(F+,+H,)

where, for the Reynolds-averaged Navier-Stokes equations,
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Here P, u, v, w, p and E are respectively density, velocity components in the x-, y- and a-
directions, pressure and total energy per unit volume. This final quantity may be expressed as

Em + +- + V, + W)

where the specific internal energy, e, is related to the pressure and density by the simple law
of a calorically-perfect gas

p - h - 1)PC

with -1 denoting the ratio of specific heats. The coefficient of thermal conductivity, P, and the
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viscosity coefficients, A and ;, are assumed to be functions only of temperature. Further-

more, A is expressed in terms of the dynamic viscosity ;& by invoking Stokes' assumption of

zero bulk viscosity. Re and Pr denote the Reynolds and Prandtl numbers, respectively.

Although, for simplicity, the equations of motion are presented here written in Cartesian

coordinates, it is well known that their strong conservation law form may be maintained

under an arbitrary space- and time-dependent transformation of coordinates.

SOLUTION METHODOLOGY

The integration scheme used here is the forward predictor - backward corrector version of

the two-step Lax-Wendroff method due to MacCormack (1]. This version of MacCormack's
scheme is used for convenience. Any of its many variants could Wws be used, as could any

other one- or two-step Lax-Wendroff scheme 121. In fact, the clas of fine-grid methods with

which the convergence acceleration technique described below may be applied appears to be

quite large, including schemes not of Lax-Wendroff type 131. The advantages of

MacCormack's method, in the present context, are its explicit nature, simplicity and low

operations count. A disadvantage is its conditional stability and the severe time-step size limi-

tation which this imposes for viscous flows, in particular. The ill effects of conditional stabili-

ty are mitigated through the use of embedded grid refinements and convergence acceleration.

The embedded-mesh technique developed for the present application is a generalization of

that employed in [41 to obtain two-dimensional Euler solutions. The computational domain is

divided into regions requiring grids of differing fineness and the resolution of different flow

physics. At preient, for simplicity, this partitioning is done s-piori However, solution-

adaptive gridding based on this technique is possible. Fig. I shows typical locations for the

mesh regions employed in the computations described subeequently in this paper. Note that,

where mesh lines are illustrated, their spacing is much coarer than that employed in the com-

putations. Mesh 3, the coarsest mesh in Fig. 1, covers the entire computauional domain. The

Euler equations are solved on it. Mesh 2, finer than mesh 3 in all directions by a factor of

two, contains the regions near the walls and the blade surface where flow can be modeled by

the thin-layer form of the equations of motion. The finest mesh shown, mesh 1, contains the

regions of the domain near the juncture of surfaces where all viscous terms have been re-

tained. From this specific example, it is easy to see that quite general collections of embed-

ded meshes may be constructed in this manner. The embedded meshes are not disjoint.

Rather, given a mesh labelled m, al coarner meshes from m+ 1 through the coarsest mesh

used in the computation underlie it. This property, together with the coarsening factor of 2,

facilitate the use of the multiple-grid acceleration techniques described in 151. The flowfield

updating begins with mesh 1. After one timestep on mesh 1, mesh 2 is updated exterior to

mesh 1 while convergence acceleration is applied at the meh-2 points interior to mesh 1.

Next, mesh 3 is updated exterior to mesh 2 while convergence acceleration is applied at the
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mesh-3 points interior to mesh 2. Updating proceeds in this fashion until the global mesh has
been advanced by one timestep. Then, convergence acceleration is applied to coaresening of
the global grid. This cycle is repeated until the desired measure of convergence is satisfied.
Observe that when both the basic integration scheme and the coarse-grid convergence ac-
celerator are explicit, the algorithm is particularly easy to vectorize. Additionally, a parallel
coasse-grid algorithm has been developed for more efficient execution on both vector- and

parallel-processing computers, as described in 151. Further, note that, while in this paper

multiple-grid convergence acceleration is applied only to steady flow almulatiens, It appears
that the technique may extend to time-accurate computation of some unsteady flows 16, 7].

When implementing an algorithm on a multiple instruction-multiple data machine, we are

concerned with multitasking overhead and algorithm granularity. By granularity we mean the
time required to execute a multitaskable code segment on a single processor. For a given
overhead, the best speedup is obtained when algorithm granularity is maximal. Large granu-
larity is usually introduced by top-down programming which exploits global parallelism In the
algorithm. Bottom-up programming exploits algorithm parallelism at a low level by making
many partitioning., each on small code segments, such as DO loops containing independent
statements. The sequential multigrid algorithm contains many opportunities for creating small
granularity parallelism but relatively few for the sort of large granularity necessary to produce
good speedup in the face of non-trivial overhead. This observation, together with the desira-
bility of non-sequential multigrid schemes for reasons of algorithm flexibility, led to the con-
struction of the parallel multigrid algorithms mentioned above. In these algorithms, grids

which are independent of one another may be updated simultaneously on separate processors.
In fact, such a simple strategy may result in a poor load balance across processors because of
the differing amounts of work inherent in updating grids of different coarseness. However,
more refined strategies are possible. Grids may be grouped together into tasks of approxi-
mately equal work, or they may be melded into tasks with other large-grained code segments
in order to equalize processor loading. Notice futher that, by multitaking large-grained struc-
tures, the vectorization potential of code within these structures remains intact.

NUMERICAL SIMULATION

As the algorithm described in this paper is designed to efficiently simulate complex flows
over complete configurations, it should be tested under conditions which fully exercise Its
capabilities. On the other hand, excessive complexity would serve no useful purpose in the
initial testing phases of the algorithm. With these considerations in mind, three-dimensional
computations are being carried out for the geometry illustrated in Fig. 2, a rectilinear cascade
of finite-span, swept blades mounted between endwalls. The sweep angle ranges from 0 to 20
degrees. The blade thickness to chord ratio ranges from 0.0 to 0.2. The subcritical compute.
tions are performed at an isentropic inlet Mach number of 0.5. The Mach number for the su-
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percritical computations is 0.675. In the viscous cases, the Reynolds numbers, based on cas-

cade gap and critics speed, span the approximate range from 8.4 x 103 to 2.0 x 105. The

mesh structure on which the computations ar being performed is illustrated in Fig. 1. The

full Navier-Stokes equations are solved on mesh 1. The thin-layer Navier-Stokes equations

an solved on mesh 2. The Euler equations are solved on mesh 3. Only steady flows are
computed and convergence acceleration, " described previously, is applied. The entire algo-

rithm is vectorised and multitasked to run on a four-processor Cray X-MP or Cra 2. Sample

results for a subcritical flow over a swept blade are shown in Fig. 3.

%,ompaison of the embedded-mesh algorithm with a single-mesh algorithm yields the fol-

lowing conclusion: the accuracy of the embedded-mesh results is essentially that of a global

finest mesh, while the convergence rate is like that of a global coarsest mesh. Thus far, in

two-dimensional computations using the Euler and thin-layer Navier-Stokes equations and

three mesh regions, embedding specdupe a high as 30 have been obtained. Three-

dimensional embeddings using Euler, thin-layer and full Navier-Stokes regions should pro-

duce substantially larger speedups.

Multiple-grid convergence acceleration applied to three-dimensional cues, in the absence

of mesh embedding, has yielded speedups ranging from 2.5 to 4.7. It is expected that there

will be some tradeoff between embedding and multigrid speedup In the complete algorithm.

Vectoriation of the three-dimensional algorithm without embedded meshes results in speed-

ups ranging from 3.6 to 5.7. This range should remain about the same in the final algorithm.

Using a top-down multitasking approach, the parallel coarse-grid algorithm has been im-

plemented on a four processor Cray X-MP, for two-dimensional cases without mesh embed-

ding. Initially, only the coarse grids were multitasked so that the performance of parallel grids
on a multiprocessor could be evaluated. Then the fine-grid computations were partitioned and

multitasked, and the resultant code was integrated with the paralelized coase grids.

For the multitasking results, performance measures ar based on a comparison of multi-

tasked code segments with their unitasked analogs. The parallel coase-grid scheme results

were obtained with a five-grid multigrid sequence length. An efficiency of nearly 90% has

been obtained using two processors, but that efficiency deteriorates to 77% when four proces-

sors are used. This deterioration is a result of distributing multigrid structures containing

unequal amounts of work across four processors. Results obtained from multitasking the

fine-grid scheme show that the fine-grid tasks re fairly evenly balanced, and this code seg-

ment performs well on both two and four processors. Processor utilization of 90% or better is

achieved. The fully multitasked two-dimensional multigrid algorithm attains efficiency levels

ranging from 04% on two processors to 83% on four processors. For the three-dimensional

Navier-Stokes code, the bottom-up approach is taken by using microtaking software on the

Cray X-MP. Microtsking incurs relatively low overhead, which allows parullelisation or very
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fine-grained code segments and alleviates the need for careful a-pr on load balancing. The

resulting fully microtasked three-dimensional code performance ranged from 98% efficiency

on two processors to 89% on four processors.

Given that the speedups from the various categories described above are generally multi-

plicative in effect, it is to be conservatively estimated that a mature implementation of the al-

gorithm will produce overall speedups ranging u high as 100.

CONCLUSIONS

An efficient algorithm designed to be used for Navier-Stokes simulations of complex flows

over complete configurations has been presented.

The algorithm makes use of several elements: a robust explicit basic flow solver, locally-

embedded mesh refinements, a flow simulation hierarchy ranging from the Euler equations

through the full Navier-Stokes equations, an explicit multiple-grid convergence acceleration

technique, and both vectorization and multitasking for efficient execution on parallel-

processing supercomputers.

Results are presented for a problem representative of turbomachinery applications. These

results provide grounds for optimism regarding the algorithm's future application to more

challenging internal and external flows. Based on the performance data presently available,
this algorithm is expected to reduce simulation times by as much as two orders of magnitude.
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Figure 1. Typical Locations for Figure 2. Computational Domain
Embedded Mesh Regions

Figure 3. Isobars for Subcritical Flow over Swept Blade
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